Nanostencil lithography for high-throughput fabrication of infrared plasmonic sensors

نویسندگان

  • Serap Aksu
  • Ahmet A. Yanik
  • Ronen Adato
  • Min Huang
  • Hatice Altug
چکیده

We demonstrate a novel fabrication approach for high-throughput fabrication of engineered infrared plasmonic nanorod antenna arrays with Nanostencil Lithography (NSL). NSL technique, relying on deposition of materials through a shadow mask, offers the flexibility and the resolution to fabricate radiatively engineer nanoantenna arrays for excitation of collective plasmonic resonances. Overlapping these collective plasmonic resonances with molecular specific absorption bands can enable ultrasensitive vibrational spectroscopy. First, nanorod antenna arrays fabricated using NSL are investigated using SEM and optical spectroscopy, and compared against the nanorods with the same dimensions fabricated using EBL. No irregularities on the periodicity or the physical dimensions are detected for NSL fabricated nanorods. We also confirmed that the antenna arrays fabricated by NSL shows high optical quality similar to EBL fabricated ones. Furthermore, we show nanostencils can be reused multiple times to fabricate selfsame structures with identical optical responses repeatedly and reliably. This capability is particularly useful when high-throughput replication of the optimized nanoparticle arrays is desired. In addition to its high-throughput capability, NSL permits fabrication of plasmonic devices on surfaces that are difficult to work with electron/ion beam techniques. Nanostencil lithography is a resist free process thus allows the transfer of the nanopatterns to any planar substrate whether it is conductive, insulating or magnetic. As proof of the versatility of the NSL technique, we show fabrication of plasmonic structures in variety of geometries. We also demonstrate that nanostencil lithography can be used to achieve functional plasmonic devices in a single fabrication step, on variety of substrates. We introduced NSL for fabrication of nanoplasmonic structures including antenna arrays on rigid surfaces such as silicon, CaF2 and glass. In conclusion, Nanostencil Lithography enables plasmonic substrates supporting spectrally narrow far-field resonances with enhanced near-field intensities which are very useful for vibrational spectroscopy. We believe this nanofabrication scheme, enabling the reusability of stencil and offering flexibility on the substrate choice and nano-pattern design could significantly enhance wide-use of plasmonics in sensing technologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy.

The introduction of high-throughput and high-resolution nanofabrication techniques operating at low cost and low complexity is essential for the advancement of nanoplasmonic and nanophotonic fields. In this paper, we demonstrate a novel fabrication approach based on nanostencil lithography for high-throughput fabrication of engineered infrared plasmonic nanorod antenna arrays. The technique rel...

متن کامل

Novel high-throughput and maskless photolithography to fabricate plasmonic molecules

Articles you may be interested in Fabrication and optical properties of controlled Ag nanostructures for plasmonic applications Formation of triplet and quadruplet plasmonic nanoarray templates by holographic lithography Appl. Sensing properties of infrared nanostructured plasmonic crystals fabricated by electron beam lithography and argon ion milling Fabrication of sub-10nm gap arrays over lar...

متن کامل

High resolution fabrication of nanostructures using controlled proximity nanostencil lithography

Nanostencil lithography has a number of distinct benefits that make it an attractive nanofabrication processes, but the inability to fabricate features with nanometer precision has significantly limited its utility. In this paper, we describe a nanostencil lithography process that provides sub-15 nm resolution even for 40-nm thick structures by using a sacrificial layer to control the proximity...

متن کامل

Repetitive Hole-Mask Colloidal Lithography for the Fabrication of Large-Area Low-Cost Plasmonic Multishape Single-Layer Metasurfaces

Nanostructuring for tailored optical functionality suffers from a lack of methods for large-area and low-cost fabrication. While electron beam lithography allows different complex shapes to be deposited onto the same substrate layer, the writing process is sequential and the fabrication is very expensive. Large-area methods, such as nanosphere lithography, [ 1 ] colloidal lithography using shad...

متن کامل

Large-area Low-cost Fabrication of Complex Plasmonic Nanostructures for Sensing Applications

In this thesis, we introduce hole-mask colloidal lithography and nanosphere lithography techniques for low-cost nanofabrication of large-area (about 1 cm) plasmonic nanostructures with different complex shapes. For the first one, we use thin film PMMA-gold hole-masks, which are first prepared with polystyrene colloids, combined with following tilted-angle-rotation evaporation to fabricate large...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011